The people listed below reflect the Quantum Computing research community within universities and research institutes across British Columbia in Canada.
Dr Paul C Haljan is an Associate Professor of Physics at Simon Fraser University with expertise in trapped-ion quantum technologies. Before joining SFU in 2005, Paul performed his doctoral work on quantum vortices in atomic Bose-Einstein condensates at the University of Colorado at Boulder and JILA and held a postdoctoral fellowship at the University of Michigan, where he worked on quantum gate implementations in trapped-ion hardware and early algorithm demonstrations. At SFU, the Haljan research group is focused on experiments with trapped ions, quantum simulations and quantum state manipulation, and technology development for trapped-ion quantum computing. They are developing the capabilities to make a precision probe of a structural phase transition in trapped ions for both fundamental interest and potential sensor applications. They have measured spontaneous nucleation of topological defects following a quench of the transition and probed the structural transition in the quantum regime. They have demonstrated new laser cooling techniques for trapped ion strings and are developing ultra-stable trap potentials for quantum technology applications.
Roman Krems is Professor of theoretical chemistry at the University of British Columbia in Vancouver, Canada. His current research interests include applications of machine learning for solving complex quantum problems, the development of quantum-inspired machine learning algorithms, and quantum machine learning. He is particularly interested in applications of Bayesian machine learning for inverse quantum problems, accelerating and improving the accuracy of quantum scattering calculations, and the development of machine learning methods for accurate extrapolation of solutions of complex physical equations. His group works on applications in quantum chemistry, quantum dynamics, quantum computing and quantum scattering theory. He graduated from Moscow State University in Moscow, Russia, in 1999, and obtained his PhD in physical chemistry from Göteborg University in Göteborg, Sweden, in 2002. He was a SAO predoctoral fellow at the Harvard-Smithsonian Center for Astrophysics in 2001–2002 and a postdoctoral fellow at the Harvard physics department and the Harvard-MIT Center for Ultracold Atoms in 2003–2005. He is fellow of the American Physical Society and member of the College of the Royal Society of Canada.
Kero is an Assistant Professor at the Department of Physics at Simon Fraser University. Before joining SFU in 2020, Kero got his PhD at the University of Toronto, and worked as a postdoc fellow at Ulm University, Max Planck Institute, and University of Chicago. Kero is a theorist working on the interplay of quantum physics and quantum information, with the focus on bosonic quantum systems, i.e. systems that behave as harmonic oscillators. His current interests include studying the properties of engineered quantum systems (e.g. optomechanics, microwave in superconducting resonator, trapped ions, photon in waveguide), and analyzing the practical performance of various technologies (e.g. sensing, communication, computation, simulation).
Andrew MacRae is an adjunct Assistant Professor and Senior Lab Instructor in the Department of Physics and Astronomy at the University of Victoria. He obtained his PhD in Physics from the University of Calgary, studying the production of quantum optical states in atomic media. Following this, he studied Bose Einstein Condensates as a postdoc in the group of Dan M Stamper-Kurn at the University of California, Berkeley. He then spent a year as a software engineer making control algorithms for ultra-precise machining before joining UVic in 2016.
His present research direction is the mapping of quantum information into and out of atomic media, using nonlinear optical processes. The primary aim of this research is to create a reliable interface between qubits held in collective spin ensembles, and optical “flying” qubits that can be transported via optical fibers.
Kirk W. Madison obtained his PhD in the group of Mark Raizen at the University of Texas at Austin in 1998 and was a postdoc in the group of Jean Dalibard at the École normale supérieure in Paris until 2001. Madison is an Associate Professor in the Department of Physics and Astronomy and leads the Quantum Degenerate Gases laboratory (a part of the UBC Center for Research on Ultra-cold Systems, CRUCS). Madison’s current research is on the experimental realization of quantum sensors and quantum gases made from laser-cooled atoms and molecules. Because of their extreme controllability and purity, quantum gases are an ideal “sandbox” quantum simulator for the creation and study of certain quantum materials. Madison’s interests include applying these special purpose quantum simulators to investigate fundamental questions of many body quantum mechanics relevant to quantum materials and quantum computing.
Andrew Potter is an Assistant Professor in the Department of Physics and Astronomy and the Stewart Blusson Quantum Matter Institute at the University of British Columbia. His research leverages theoretical tools from quantum information to address fundamental scientific questions such as what are the possible phases of matter? and, when do (or more interestingly don’t!) quantum systems reach thermal equilibrium? He also works on the theory and modelling of quantum computing- and quantum simulation- hardware in solid-state devices and AMO systems, and has recently focused on developing near-term quantum algorithms for material simulation based on quantum tensor network methods. Andrew obtained his PhD in theoretical condensed matter physics from MIT, and was a Gordon and Betty Moore Foundation postdoctoral fellow at University of California, Berkeley. Before joining UBC, Andrew was an Assistant Professor of Physics at the University of Texas at Austin, and a principal physicist in the theory and algorithms group at Honeywell | Quantum Solutions. He is a Sloan Research Fellow, and has received a US National Science Foundation early career award, the IUPAP 2021 Young Scientist award.